The manuscript deals with the critical review for cooling of discrete heated electronic components using liquid jet impingement. Cooling of electronic components has been a lead area of research in recent years. Due to the rapid growth of electronic industries, there is an enormous rise in the system power consumption, and the reduction in the size of electronic components has led to a rapid increase in the heat dissipation rate per unit volume of components. The present paper deals with the role of liquid jet impingement (heat flux removal rate 200-600 W/cm 2) for cooling of electronic components. The type of working fluids (Water / Fluorocarbon liquids / Dielectric fluids / Nanofluids) used for cooling, mode of heat transfer (Natural / Forced / Mixed) from electronic components, and the method of analysis (Experimental / Numerical / Combination of both) greatly influence the cooling mechanism. The electronic components considered in the present study are limited to microelectronic chips, VLSI circuit chips, integrated circuits (IC) chips and resistors. Most of the literature is pertinent to cooling of square heat sources, and many of the researchers have also focused on the comparative studies using different working fluids. Results suggest that Fluorocarbon liquids can be used for higher heat flux removal due to their high boiling point. The temperature drop obtained from the electronic components using liquid jet impingement was found to be in the range of 80-85ºC.