Resistive switching random access memory (RRAM), also known as memristor, is regarded as an emerging nonvolatile memory and computing-in-memory technology to address the intrinsic physical limitations of conventional memory and the bottleneck of von Neumann architecture. In particular, halide perovskite RRAMs have attracted widespread attention in recent years because of their ionic migration nature and excellent photoelectric properties. This Perspective first provides a condensed overview of halide perovskite RRAMs based on materials, device performance, switching mechanism, and potential applications. Moreover, this Perspective attempts to detail the challenges, such as the quality of halide perovskite films, the compatible processing of device fabrication, the reliability of memory performance, and clarification of the switching mechanism, and further discusses how the outstanding challenges of halide perovskite RRAMs could be met in future research.