2008 15th International Conference on Systems, Signals and Image Processing 2008
DOI: 10.1109/iwssip.2008.4604380
|View full text |Cite
|
Sign up to set email alerts
|

An approach to recommender system applying usage mining to predict users’ interests

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
1

Year Published

2008
2008
2021
2021

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 8 publications
(5 citation statements)
references
References 5 publications
0
4
0
1
Order By: Relevance
“…As informações dos utilizadores podem ser recolhidas de forma explícita (de forma voluntaria, por parte dos utilizadores) ou de uma forma implícita (é registado o comportamento do utilizador, sem este se aperceber) (Gotardo, Teixeira, & Zorzo, 2008).…”
Section: Estratégias De Personalizaçãounclassified
“…As informações dos utilizadores podem ser recolhidas de forma explícita (de forma voluntaria, por parte dos utilizadores) ou de uma forma implícita (é registado o comportamento do utilizador, sem este se aperceber) (Gotardo, Teixeira, & Zorzo, 2008).…”
Section: Estratégias De Personalizaçãounclassified
“…A more advanced method to estimate a user's knowledge and interest is presented by Gotardo et al [8]. They incorporate usage mining to calculate a user's interest in a certain topic.…”
Section: B Knowledge Estimationmentioning
confidence: 99%
“…Liang, Xu, Li, and Nayak (2008) explored how to utilize tagging information to perform personalized recommendation. Gotardo, Teixeira, and Zorzo (2008) described an approach to predict the users' interest in Web-base systems through a collaborative filtering technique based on the users' implicit information describing their system use. Jeong, Lee, and Cho (2009) presented a novel iterative semi-explicit rating method that extrapolated unrated elements in a semi-supervised manner for generating a dense preference matrix to solve the problem of a much sparser preference matrix than the explicit rating.…”
Section: Related Work and Comparisonmentioning
confidence: 99%