Two-dimensional finite impulse response (FIR) filters are an important component in many image and video processing systems. The processing of complex video applications in real time requires high computational power, which can be provided using field programmable gate arrays (FPGAs) due to their inherent parallelism. The most resource-intensive components in computing FIR filters are the multiplications of the folding operation. This work proposes two optimization techniques for high-speed implementations of the required multiplications with the least possible number of FPGA components. Both methods use integer linear programming formulations which can be optimally solved by standard solvers. In the first method, a formulation for the pipelined multiple constant multiplication problem is presented. In the second method, also multiplication structures based on look-up tables are taken into account. Due to the low coefficient word size in video processing filters of typically 8 to 12 bits, an optimal solution is found for most of the filters in the benchmark used. A complexity reduction of 8.5% for a Xilinx Virtex 6 FPGA could be achieved compared to state-of-the-art heuristics.