Reactive oxygen species (ROS) are a major causative factor of inflammatory responses and extracellular matrix degradation. ROS also cause skin aging and diverse cutaneous lesions. Therefore, antioxidants that inhibit the generation of ROS may be beneficial in the relief of skin aging and diseases. We investigated the anti-skin aging effect of anthraquinones from cultures of Colletotrichum sp., an endophytic fungus isolated from Morus alba L. using human dermal fibroblasts (HDFs). We preferentially evaluated the preventive effects of anti-oxidative anthraquinones (1, 4) against the generation of ROS, nitric oxide (NO), and prostaglandins-E2 (PGE2). Among them, 1,3-dihydroxy-2,8-dimethoxy-6-methylanthraquinone (1) suppressed the generation of ROS, NO, and PGE2 in tumor necrosis factor-alpha (TNF-α)-stimulated HDFs. Compound 1 reversed the TNF-induced increase in matrix metalloproteinase (MMP)-1 and a decrease in procollagen I α1 (COLIA1). It also suppressed inducible NO synthase, cyclooxygenase-2, interleukin (IL)-1β, IL-6, and IL-8, which upregulate inflammatory reactions. Mechanistically, compound 1 suppressed nuclear factor-κB, activator protein 1, and mitogen-activated protein kinases in TNF-α-stimulated HDFs. These results suggest that compound 1 may be beneficial for improving skin aging and diverse cutaneous lesions.