Carbonic anhydrase is a ubiquitous metalloenzyme that catalyzes the reversible interconversion of CO2/HCO3−. Equilibrium of these species is maintained by the action of carbonic anhydrase. Recent advances in magnetic resonance spectroscopy have allowed, for the first time, in vivo characterization of carbonic anhydrase in the human brain. In this article, we review the theories and techniques of in vivo 13C magnetization (saturation) transfer magnetic resonance spectroscopy as they are applied to measuring the rate of exchange between CO2 and HCO3− catalyzed by carbonic anhydrase. Inhibitors of carbonic anhydrase have a wide range of therapeutic applications. Role of carbonic anhydrases and their inhibitors in many diseases are also reviewed to illustrate future applications of in vivo carbonic anhydrase assessment by magnetic resonance spectroscopy.