To address the wire complexity problem in largescale globally asynchronous, locally synchronous systems, a current-mode ternary encoding scheme was devised for a two-phase asynchronous protocol. However, for data transmission through a very long wire, few studies have been conducted on reducing the long propagation delay in current-mode circuits. Hence, this paper proposes a current steering logic (CSL) that is able to minimize the long delay for the devised current-mode ternary encoding scheme. The CSL creates pulse signals that charge or discharge the output signal in advance for a short period of time, and as a result, helps prevent a slack in the current signals. The encoder and decoder circuits employing the CSL are implemented using 0.25-lm CMOS technology. The results of an HSPICE simulation show that the normal and optimal mode operations of the CSL achieve a delay reduction of 11.8% and 28.1%, respectively, when compared to the original scheme for a 10-mm wire. They also reduce the power-delay product by 9.6% and 22.5%, respectively, at a data rate of 100 Mb/s for the same wire length.