Dynamic logic can provide significant performance and power benefit compared to implementations using static gates. Unfortunately dynamic gates have traditionally suffered from low noise margins, which limits their reliability. A new logic family, called complementary dynamic logic (CDL), is presented. CDL replaces the standard keeper logic with a dual dynamic keeper gate that is applicable to all dynamic gate structures. CDL provides dynamic gates with two novel characteristics: hysteresis and arbitrarily configurable noise margins. However, these two benefits come at the cost of reducing the gain and increasing the energy of the dynamic gate. This paper compares the noise, energy, performance, gain, and total transistor width tradeoffs of CDL and three other logic families applied to a 65nm cell library consisting of 23 functions. The results show that the performance advantages of dynamic domino gates can be maintained while providing significantly enhanced noise margins using CDL structures.