H. LANGLOIS et al. : Pouvoir rotatoire du cinabre (a-HgS) 821 phys. stat. sol. (b) 60, 821 (1973) Subject classification: 20.1; 13.1; 22.4.1 Centre National d'Etudes des TLliconzmunications, Bagneux ( a ) et Lannion (b) Pouvoir rotatoire du cinabre (a-HgS) Par H. LANGLOIS (a), B. AYRAULT (a), F. LEFIN (a) et Y. TOUDIC (b) Le pouvoir rotatoire du cinabre a 8th mesurh entre la bande interdite (1 x 0,6 pm) et 1 = 1 pm iL 300, 196,77,20 et 4 K. L'analyse des resultats montre que la dispersion rotatoire est mieux dhcrite par la formule de Drude (e = A/(L2 -a:)), dhduite d'un modhle a un oscillateur, que par celle de Chandrasekhar (e = A A2/(A2 -ddduite d'un modale A deux oscillateurs coupl6s. L'Btude en fonction de la temphrature montre qu'une meme transition est responsable de l'absorption fondamentale au voisinage de E, et de la dispersion rotatoire.The rotatory power of cinnabar has been measured between the band gap (1 z 0.6 Fm) and 1 = 1 pm a t 300, 196, 77, 20, and 4 I ( . The dispersion of the optical activity is better accounted for by a Drude formula (e = A / ( P -A:)) deduced from a one oscillator model, than by Chandrasekhar's one (p = A Az/(A2deduced from a two coupled oscillators model. The analysis of the data versus temperature shows that the same transition accounts as well for the absorption near the band gap as for the rotatory dispersion.