Ad exchanges are widely used in platforms for online display advertising. Autonomous agents operating in these exchanges must learn policies for interacting profitably with a diverse, continually changing, but unknown market. We consider this problem from the perspective of a publisher, strategically interacting with an advertiser through a posted price mechanism. The learning problem for this agent is made difficult by the fact that information is censored , i.e., the publisher knows if an impression is sold but no other quantitative information. We address this problem using the Harsanyi-Bellman Ad Hoc Coordination (HBA) algorithm [1,3], which conceptualises this interaction in terms of a Stochastic Bayesian Game and arrives at optimal actions by best responding with respect to probabilistic beliefs maintained over a candidate set of opponent behaviour profiles. We adapt and apply HBA to the censored information setting of ad exchanges. Also, addressing the case of stochastic opponents, we devise a strategy based on a Kaplan-Meier estimator for opponent modelling. We evaluate the proposed method using simulations wherein we show that HBA-KM achieves substantially better competitive ratio and lower variance of return than baselines, including a Q-learning agent and a UCB-based online learning agent, and comparable to the offline optimal algorithm.