Atlantic cod (Gadus morhua) is one of the most important fish species in northern Europe for several reasons including its predator status in marine ecosystems, its historical role in fisheries, its potential in aquaculture and its strong public profile. However, due to over-exploitation in the North Atlantic and changes in the ecosystem, many cod populations have been reduced in size and genetic diversity. Cod populations in the Baltic Proper, Kattegat and North Sea have been analyzed using a species specific single nucleotide polymorphism (SNP) array. Using a subset of 8,706 SNPs, moderate genetic differences were found between subdivisions in three traditionally delineated cod management stocks: Kattegat, western and eastern Baltic. However, an F St measure of population differentiation based on allele frequencies from 588 outlier loci for 2 population groups, one including 5 western and the other 4 eastern Baltic populations, indicated high genetic differentiation. In this paper, differentiation has been demonstrated not only between, but also within western and eastern Baltic cod stocks for the first time, with salinity appearing to be the most important environmental factor influencing the maintenance of cod population divergence between the western and eastern Baltic Sea. Sustainable exploitation of living marine resources by fishery, aquaculture and biotechnology, and monitoring and predicting the effects of climate changes require an understanding of taxonomy and population biology. Populations are sustainably exploited if the removal of individuals does not reduce the ability of a population to reproduce and maintain its phenotypic and genetic diversity. Such populations have been defined for conservation purposes as "evolutionary significant units" 1 , and traditionally have been defined using genetic methods such as analyses of allozymes, nuclear DNA loci, microsatellites and mitochondrial DNA 2 and knowledge of fish biology and morphology 3. The management units are defined for reporting on stock assessment and catches by different countries. The issue of inconsistency between existing management units and population biology and