Histoplasma capsulatum (Hc) is a systemic, dimorphic fungal pathogen that affects upwards of 500,000 individuals in the United States annually. Hc grows as a multicellular mold at environmental temperatures; whereas, upon inhalation into a human or other mammalian host, it transforms into a unicellular, pathogenic yeast. This manuscript is focused on characterizing the DNA damage-responsive gene HcDDR48. HcDDR48 was originally isolated via a subtractive DNA library enriched for transcripts enriched in the mold-phase of Hc growth. Upon further analysis we found that HcDDR48 is not just expressed in the mold morphotype, but both growth programs dependent upon the environment. We found that HcDDR48 is involved in oxidative stress response, antifungal drug resistance, and survival within resting and activated macrophages. Growth of ddr48Δ yeasts was severely decreased when exposed to the reactive oxygen species generator paraquat, as compared to wildtype controls. We also found that ddr48Δ yeasts were 2-times more sensitive to the antifungal drugs amphotericin b and ketoconazole. To test HcDDR48s involvement in vivo, we infected resting and activated RAW 264.7 murine macrophages with Hc yeasts and measured yeast survival 24-hours post-infection. We observed a significant decrease in yeast recovery in the ddr48Δ strain compared to wildtype Hc levels. Herein, we demonstrate the importance of maintaining a functional copy of HcDDR48 in order for Hc yeasts to sense and respond to numerous environmental and host-associated stressors.