The growing development of Nanotechnology has allowed the synthesis and characterization of nanomaterials with peculiar physicochemical properties. These nanomaterials have been applied in various scientific and industrial sectors. The present study established the synthesis of carbon black agglomerates (CBA) from waste vegetal materials as a source of renewable raw materials using a simple, fast, and effective procedure. Once this nanostructured material was obtained, several analytical techniques were applied to establish its main characteristics, including X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller (BET) theory analysis, and SEM imaging. The results of this characterization have made it possible to establish that these materials have properties that make them suitable for application as extracting sorbents in microextraction sample treatment techniques under the green analytical chemistry approach. In this study, we applied Pipette-tip SPE microextraction for pharmaceutical compound extraction studies, preparing extraction devices with less than five milligrams of the sorbent. The results showed high extraction percentages for compounds such as paracetamol, caffeine, diazepam, and dexamethasone. Finally, an application example of the last compound is presented, developing a procedure for its determination in urine samples by high-performance liquid chromatography with diode array detection (HPLC-DAD) chromatographic analysis with high merit figures in terms of simplicity, high extraction efficiency, and environmental friendliness.
Keywords: carbon black; nanostructured material; olive seed; microextraction; biological samples