The total antioxidant capacity and fluorescence imaging of selected plant leaves commonly consumed in Brunei Darussalam AIP Conference Proceedings 1933, 020001 (2018) Abstract. The increasing number of bone fracture incident in Indonesia from year to year needs an urgent problem solving of the limited bone substitute which can meet the necessary criteria for that purpose. Motivated by this, therefore, the current study is focusing on the optimization of material properties used as bone scaffold. A biomaterial of polyvinyl alcohol (PVA)/chitosanhydroxyapatite (HA) composite was successfully made by wet chemistry method, followed by freeze thawing and freeze drying. For comparison purposes, the percentage of HA has been varied from 0, 25 and 40 % (wt/v). The resulting composites were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), compressive test, and swelling behavior. The results showed that the addition of HA up to 40% (wt/v) has yielded a porous structure with an average pore size of 42.39 μm. In addition, the compressive modulus was enhanced from 14 MPa for 0% HA to 143, and 191 MPa for composites with the addition of HA from 25 to 40% (wt/v). The addition of HA has also reduced the swelling ratio from 296% for the sample without HA to 85 and 78 % for sample with addition of HA from 25 to 40 (wt/v), respectively. The obtained results show that PVA/chitosan-HA in this study is potential to be used as scaffold in bone tissue engineering.