An experimental method to determine the temperature dependence of residual stress in threedimensional (3D) structures was developed using polarized Raman spectroscopy. Stresses of a copper-filled silicon via at three temperatures, 223, 298, and 413 K were derived by measuring the frequency shift of the optical phonons through the backscattering geometry from the cross-section of the structure and assuming non-isotropic biaxial (horizontal and depth) stresses on the crosssection. Both stress components changed from tensile to compressive in almost all areas as the temperature changed from 213 to 413 K. The absolute stress values increased at both low and high temperatures and were smallest at 298 K, which was nearest to the process temperature of copper filling by plating. The main cause of stress is considered to be the difference in the coefficient of thermal expansion between copper and silicon. These results indicate that the temperature dependence of stress of copper-filled vias is affected mainly by their fabrication temperature. Process temperature is one of the key factors for the reduction of thermal stress in 3D structures such as integrated circuits connected by through-silicon vias. V C 2013 AIP Publishing LLC.