This paper proposes a roller-integrated acoustic wave detection technique for rockfill materials. This technique can be divided into two parts: theoretical analysis and technical implementation. Based on Lamb's problem and an infinite baffle piston radiation acoustic field model, a relationship model between the sound compaction value (SCV) and the dry density of the natural gravel materials (NGM) was established, namely, A-model. During the modeling process, an innovative differential pulse excitation method (DPEM) was used to find the numerical solution of the vertical displacement of the soil surface under harmonic loads. In this research, a continuous compaction control acoustic wave detection system (CAWDS) was developed and utilized along with real-time kinematic global positioning systems (RTK-GPS). The SCV was adopted as a characterization index for the compaction quality of rockfill materials. A case study on a reservoir project in Luoyang, China indicated that the SCV is highly linearly correlated with the number of compaction times, dry density, and compactness of the NGM. This new technique demonstrated several advantages, such as higher accuracy, discreetness, convenience, and suitability for detecting the compactness of the NGM. This technique is an effective tool for compaction quality control of rockfill materials and has a great potential for further applications.