Three strains of bacteria were isolated and purified from activated sludge for white water treatment in the laboratory. These strains were identified as Bacillus subtilis, Bacillus cereus, and Virgibacillus pantothenticus through a morphological analysis, the MIDI Sherlock automatic microbial identification system, and 16S rRNA methods. The results of the construction of efficient microflora for white water showed that a mass percentage ratio of B. subtilis, B. cereus, and V. pantothenticus of 50%:35%:15% achieved an optimal treatment effect. Analysis by gas chromatograph-mass spectrometer (GC-MS) established that the content of characteristic pollutants in white water decreased notably after treatment with the efficient microflora, and detected the intermediate products of short chain fatty acids, alcohols, and other compounds. Moreover, through measuring the removal rate of chemical oxygen demand (COD), electrical conductivity, and cationic demand (CD), the optimal retention time for white water treatment with the efficient microflora was 4 h to 6 h, and when the removal rate of COD reached approximately 90%, the electrical conductivity and the cationic demand were reduced to lower values.