2001
DOI: 10.1002/nme.394
|View full text |Cite
|
Sign up to set email alerts
|

Computation of electromagnetic scattering with a non‐conforming discontinuous spectral element method

Abstract: SUMMARYIn this paper we solve electromagnetic scattering problems by approximating Maxwell's equations in the time-domain with a high-order quadrilateral discontinuous spectral element method (DSEM). The method is a collocation form of the discontinuous Galerkin method for hyperbolic systems where the solution is approximated by a tensor product Legendre expansion and inner products are replaced with Gauss-Legendre quadratures. To increase exibility of the method, we use a mortar element method to couple eleme… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
102
0
2

Year Published

2005
2005
2021
2021

Publication Types

Select...
7
2
1

Relationship

1
9

Authors

Journals

citations
Cited by 146 publications
(106 citation statements)
references
References 19 publications
0
102
0
2
Order By: Relevance
“…In this article, we adopt the spectral-element method (SEM), which combines the accuracy of pseudospectral methods with the flexibility of the FEM, thereby providing key advantages in terms of computational performance (e.g., Tromp et al, 2008). If need be, the SEM can be implemented as a discontinuous Galerkin method (Kopriva et al, 2002;Kopriva, 2006;Acosta Minolia and Kopriva, 2011). The SEM has been used to study 2D and 3D local, regional, and global seismic-wave propagation problems (e.g., Cohen et al, 1993;Priolo et al, 1994;Faccioli et al, 1997;Komatitsch, 1997;Komatitsch and Vilotte, 1998;Komatitsch and Tromp, 2002a,b;Chaljub and Valette, 2004;Komatitsch et al, 2004Komatitsch et al, , 2005Liu et al, 2004;Stich and Morelli, 2007;Lee et al, 2008;Stich et al, 2009;Stupazzini et al, 2009;Tape et al, 2010;Zhu et al, 2012a,b).…”
Section: Introductionmentioning
confidence: 99%
“…In this article, we adopt the spectral-element method (SEM), which combines the accuracy of pseudospectral methods with the flexibility of the FEM, thereby providing key advantages in terms of computational performance (e.g., Tromp et al, 2008). If need be, the SEM can be implemented as a discontinuous Galerkin method (Kopriva et al, 2002;Kopriva, 2006;Acosta Minolia and Kopriva, 2011). The SEM has been used to study 2D and 3D local, regional, and global seismic-wave propagation problems (e.g., Cohen et al, 1993;Priolo et al, 1994;Faccioli et al, 1997;Komatitsch, 1997;Komatitsch and Vilotte, 1998;Komatitsch and Tromp, 2002a,b;Chaljub and Valette, 2004;Komatitsch et al, 2004Komatitsch et al, , 2005Liu et al, 2004;Stich and Morelli, 2007;Lee et al, 2008;Stich et al, 2009;Stupazzini et al, 2009;Tape et al, 2010;Zhu et al, 2012a,b).…”
Section: Introductionmentioning
confidence: 99%
“…As in a usual FV method, the Riemann solver [46] stabilizes the solution. However in this case higher accuracy may be achieved by increasing the order of the approximation, N, as well as by reducing the size of the elements, h. The DGSEM is used in a wide range of applications such as compressible flows [5,35], electromagnetics and optics [1,13,14,29], heat transfer [32], aeroacoustics [9,36,42,43], meteorology [22,23,38], and geophysics [16,17].…”
mentioning
confidence: 99%
“…Las ecuaciones de Maxwell en un medio homogéneo isotrópico, sin considerar cargas y densidad de corriente en la superficie de la interfaz, se pueden reescribir en la siguiente forma conservativa, [12] y [8]:…”
Section: Ecuación Del Modelounclassified