2008
DOI: 10.1007/s10957-008-9500-5
|View full text |Cite
|
Sign up to set email alerts
|

Convergence Analysis of the Inexact Infeasible Interior-Point Method for Linear Optimization

Abstract: In this paper we present the convergence analysis of the inexact infeasible path-following (IIPF) interior point algorithm. In this algorithm the preconditioned conjugate gradient method is used to solve the reduced KKT system (the augmented system). The augmented system is preconditioned by using a block triangular matrix.The KKT system is solved approximately. Therefore, it becomes necessary to study the convergence of interior point method for this specific inexact case. We present the convergence analysis … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
37
0
3

Year Published

2010
2010
2022
2022

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 22 publications
(40 citation statements)
references
References 21 publications
0
37
0
3
Order By: Relevance
“…This is in contrast to the equivalent Schur complement formulation [7], which gives an inexact constraint preconditioner. As such, null-space preconditioners could be useful in optimization, where solution methods that remain on the constraint manifold are often required; see, e.g., [1]. Additionally, it is possible to use a projected CG or MINRES method in this case, as described in section 3.4.…”
Section: 3mentioning
confidence: 99%
“…This is in contrast to the equivalent Schur complement formulation [7], which gives an inexact constraint preconditioner. As such, null-space preconditioners could be useful in optimization, where solution methods that remain on the constraint manifold are often required; see, e.g., [1]. Additionally, it is possible to use a projected CG or MINRES method in this case, as described in section 3.4.…”
Section: 3mentioning
confidence: 99%
“…As análises dos métodos de pontos interiores inexatos mostram que se o erro residualé controlado, aindaé possível calcular uma boa direção de busca em cada iteração [1][2][3]15].…”
Section: Método De Pontos Interiores Primal-dualunclassified
“…Desta forma, a resolução do sistema se torna mais rápida nas iterações iniciais, já que haverá uma economia de tempo tanto no cálculo dos elementos do fator incompleto, quanto na resolução dos dois sistemas triangulares. 5 …”
Section: Nova Abordagem Na Solução Direta Do Sistema De Equações Normaisunclassified
“…A consequência de se resolver o sistema de Newton que surge nos MPI por um método iterativoé o surgimento de um erro residual do lado direito da equação, mas se este erro satisfazer certas condições em cada iteração, aindaé possível calcular uma boa direção no sentido de que a convergência do métodoé atingida [5,6].…”
unclassified