2007
DOI: 10.2140/gt.2007.11.1777
|View full text |Cite
|
Sign up to set email alerts
|

Convex projective structures on Gromov–Thurston manifolds

Abstract: We study Gromov-Thurston examples of negatively curved n-manifolds which do not admit metrics of constant sectional curvature. We show that for each n > 3 some of the Gromov-Thurston manifolds admit strictly convex real-projective structures.53C15, 53C20; 20F06

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
35
0
5

Year Published

2012
2012
2024
2024

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 41 publications
(40 citation statements)
references
References 14 publications
0
35
0
5
Order By: Relevance
“…Kapovich et Benoist ont construit en toute dimension n ⩾ 4 (Benoist pour n = 4 dans [Ben06b] et Kapovich pour n ⩾ 4 dans [Kap07]) des convexes divisibles non homogènes, strictement convexes et non quasi-isométriques à l'espace hyperbolique H n .…”
Section: Introductionunclassified
“…Kapovich et Benoist ont construit en toute dimension n ⩾ 4 (Benoist pour n = 4 dans [Ben06b] et Kapovich pour n ⩾ 4 dans [Kap07]) des convexes divisibles non homogènes, strictement convexes et non quasi-isométriques à l'espace hyperbolique H n .…”
Section: Introductionunclassified
“…Johnson et Millson ont construit en toute dimension n 2 des convexes divisibles irréductibles, strictement convexes et non homogènes ( [12]) en déformant des réseaux cocompacts de SO n,1 (R). Kapovich et Benoist ont construit (Benoist pour n = 4 dans [3] et Kapovich pour n 4 dans [14]) des convexes divisibles strictement convexes, non homogènes et non quasiisométriques à l'espace hyperbolique H n en toute dimension n 4.…”
Section: Annales De L'institut Fourierunclassified
“…A convex projective structure therefore induces a representation, called the holonomy representation, identifying π 1 N with the discrete subgroup Γ ⊂ PGL n+1 R. Hyperbolic structures are special examples of convex real projective structures, but there are many non-hyperbolic manifolds that admit such structures as well. See Benoist [2,3] or Kapovich [30] for some examples. See Benoist [4] for a survey of the subject of convex projective structures on closed manifolds.…”
Section: Introductionmentioning
confidence: 99%