The temperature effect on the mechanical and tribological behaviors of a microelectromechanical systems cantilever is experimentally investigated using an atomic force microscope. A nonlinear variation of the bending stiffness of microcantilevers as a function of temperature is determined. The variation of the adhesion force between the tip of atomic force microscope (AFM) probe (Si 3 N 4 ) and the microcantilever fabricated in gold is monitored at different temperatures. Using the lateral mode operation of atomic force microscope, the influence of temperature on friction coefficient between the tip of AFM probe and microcantilever is presented. Finite element analysis is used to estimate the thermal field distribution in microcantilever and the axial expansion.