Abstract. Electric power grids are presently being integrated with sensors that provide measurements at high rates and resolution. The abundance of sensor measurements, as well as the added complexity of applications trigger a demand for cyber-physical system (CPS) modeling and simulation for evaluating the characteristics of appropriate network fabrics, timing profiles and distributed application workflow of power applications. Although simulation aids in the pre-deployment decision making process, system models for complex CPS can quickly become impractical for the purposes of specialized evaluation of design aspects. Existing modeling techniques are inadequate for capturing the heterogeneous nature of CPS and tend to inherently couple orthogonal design concerns. To address this issue, we present an aspect-oriented modeling and simulation paradigm. The aspectoriented approach provides a separation between functional models and crosscutting modeling concerns such as network topology, latency profiles, security aspects, and quality of service (QoS) requirements. As a case study, we consider a three-area smart grid topology and demonstrate the aspect-oriented approach to modeling network and middleware behavior for a distributed state estimation application. We also explore how aspects leverage scalable co-simulation, fault modeling, and middleware-in-the loop simulation for complex smart grid models.