This work describes a 12 b 200 kS/s 0.52 mA 0.47 mm 2 ADC for sensor applications such as motor control, 3-phase power control, and CMOS image sensors simultaneously requiring ultra-low power and small size. The proposed ADC is based on the conventional algorithmic architecture with a recycling signal path to optimize sampling rate, resolution, chip area, and power consumption. The input SHA with eight input channels employs a folded-cascode amplifier to achieve a required DC gain and a high phase margin. A 3-D fully symmetric layout with critical signal lines shielded reduces the capacitor and device mismatch of the multiplying D/A converter while switched-bias power-reduction circuits minimize the power consumption of analog amplifiers. Current and voltage references are integrated on chip with optional off-chip voltage references for low glitch noise. The down-sampling clock signal selects the sampling rate of 200 kS/s and 10 kS/s with a further reduced power depending on applications. The prototype ADC in a 0.18 µm n-well 1P6M CMOS process demonstrates a maximum measured DNL and INL within 0.40 LSB and 1.97 LSB and shows a maximum SNDR and SFDR of 55 dB and 70 dB at all sampling frequencies up to 200 kS/s, respectively. The ADC occupies an active die area of 0.47 mm 2 and consumes 0.94 mW at 200 kS/s and 0.