This analysis explores the implications of technology options for steam-assisted gravity drainage (SAGD) surface facilities on cost, energy, greenhouse gas (GHG) emissions, and water consumption. Water integration in the form of distributed effluent treatment system design as well as heat integration considerations are the basis of this study. Cost savings are accomplished by sequentially employing water network optimization and energy integration techniques. Total annual cost savings of 2.7 to 7.8% are achieved at the surface facility through water integration. Additional operating cost savings of 9.2-10.2% are found due to heat integration. Of the technology options considered in this study, hot lime softening (HLS) with blowdown evaporation and hot lime softening with blowdown recycle are the most promising when considering the tradeoffs between energy, greenhouse gas emissions, and water consumption. However, these options are quite different (i.e., blowdown evaporation has lower water consumption but higher greenhouse gas emissions than blowdown recycle, whereas blowdown recycle has lower greenhouse gas emissions but higher water consumption than blowdown evaporation). Deciding between these options requires placing a value on these environmental externalities. The approach described in this work can be applied to inform decisions in the face of tradeoffs between a range of performance metrics. In addition, the analysis framework described in this paper can be adapted to consider new technology pathways as they become available.