In the years to come new solutions will be required to overcome the limitations of scaled CMOS technology. One approach is to adopt Nano-Magnetic Logic Circuits, highly appealing for their extremely reduced power consumption. Despite the interesting nature of this approach, many problems arise when this technology is considered for real designs. The wire is the most critical of these problems from the circuit implementation point of view. It works as a pipelined interconnection, and its delay in terms of clock cycles depends on its length. Serious complications arise at the design phase, both in terms of synthesis and of physical design.
One possible solution is the use of a delay insensitive asynchronous logic, Null Convention Logic (NCL
TM
). Nevertheless its use has many negative consequences in terms of area occupation and speed loss with respect to a Boolean version. In this article we analyze and compare different solutions: nanomagnetic circuits based on full NCL, mixed Boolean-NCL, and fully Boolean logic. We discuss the advantages of these logics, but also the issues they raise. In particular we analyze feedback signals, which, due to their intrinsic pipelined nature, cause errors that still have not found a solution in the literature. The innovative arrangement we propose solves most of the problems and thus soundly increases the knowledge of this technology. The analysis is performed using a VHDL behavioral model we developed and a microprocessor we designed based on this model, as a sound and realistic test bench.