Rice is considered as a major crop due to its demand globally. Pakistan is famous throughout the world to produce export quality rice which have healthy contribution in boosting the regional economy. Rice plant require plenty of water for its proper growth and development therefore, water conservation is significant to maintain water reserves for a sustainable future. The main objective of this study was to identify day-to-day availability of water in rice fields from Germination to Ripening (GTR) using Carnegie Ames Stanford Approach (CASA) model. CASA model incorporates real-time parameter e.g., temperature, pressure, extraterrestrial radiations, Leaf Area Index (LAI), vapor pressure and sunshine hours to compute net-shortwave radiations (Rns), net-longwave radiations (Rnl), net-radiations (Rn), actual incoming radiations (Rso), sensible heat flux (H), ground heat flux (Go) and finally the water stress (W). The averaged values of Rn, Rso, Rns, Rnl and H were computed as 206, 319, 178, 34 and 124 (wm-2) respectively for GTR. Total expected sunshine hours were 1584h but we could receive only 874 h during GTR due to “off and on” cloud activity. LAI and Go were observed in inverse relation to each other.