The characterization of the diversity of species living within ecosystems is of major scientific interest to understand the functioning of these ecosystems. It is also becoming a societal issue since it is necessary to implement the conservation or even the restoration of biodiversity. Historically, species have been described and characterized on the basis of morphological criteria, which are closely linked by environmental conditions or which find their limits especially in groups where they are difficult to access, as is the case for many species of microorganisms. The need to understand the molecular mechanisms in species has made the PCR an indispensable tool for understanding the functioning of these biological systems. A number of markers are now available to detect nuclear DNA polymorphisms. In genetic diversity studies, the most frequently used markers are microsatellites. The study of biological complexity is a new frontier that requires high-throughput molecular technology, high speed computer memory, new approaches to data analysis, and the integration of interdisciplinary skills. DOI: http://dx.doi.org/10.5772/intechopen.86491 temperature. At this temperature, the matrix DNA, which serves as matrix during the replication, is denatured: the hydrogen bonds cannot be maintained at a temperature higher than 80°C and the double-stranded DNA is denatured into singlestranded DNA (single-stranded DNA).
Polymerase Chain Reaction (PCR): Principle and Applications
HybridizationThe second step is hybridization. It is carried out at a temperature generally between 40 and 70°C, called primer hybridization temperature. Decreasing the temperature allows the hydrogen bonds to reform and thus the complementary strands to hybridize. The primers, short single-strand sequences complementary to regions that flank the DNA to be amplified, hybridize more easily than long strand matrix DNA. The higher the hybridization temperature, the more selective the hybridization, the more specific it is.