This paper presents the results of forced wear simulation of the friction lift guide rails. The forced wear in the case discussed is an effect of plastic strain of the guide rail surface due to emergency braking of the lift. For the purpose of qualitative and quantitative assessment of wear, the authors applied the numerical simulation of a stray magnetic field. Application of this method allowed evaluating the degree of wear based on the stray field changes. Application of this simulation method allowed obtaining satisfactory results of qualitative and quantitative assessment of the guide rail wear. The intention of this paper was to prove that the permanent magnetic field and the stray field can be applied for the efficient detection of the steel guide rail damages and to verify the possibility of making the quantitative assessment related to the guide rail wear degree versus the personal lift service life.