Stem cells are presumed to survive various stresses, since they are recruited to areas of tissue damage and regeneration, where inflammatory cytokines and cytotoxic cells may result in severe cell injury. We explored the ability of mesoangioblasts to respond to different cell stresses such as heat, heavy metals and osmotic stress, by analyzing heat shock protein (HSP)70 synthesis as a stress indicator. We found that the A6 mesoangioblast stem cells constitutively synthesize HSP70 in a heat shock transcription factor (HSF)-independent way. However, A6 respond to heat shock and cadmium treatment by synthesizing HSP70 over the constitutive expression and this synthesis is HSF1 dependent. The exposure of A6 to copper or to a hypertonic medium does neither induce HSP70 synthesis nor activation of HSF1, while a constitutive binding of constitutive heat shock element binding factor was found. Together, these data suggest that mesoangioblasts constitutively express HSP70 as an 'a priori ' activation mechanism, while they maintain the ability to respond to stress stimuli.