Presence and distribution of ecological barriers shapes the distribution of migratory birds as well as any other living organism. In Italy, short-toed snake eagles (Circaetus gallicus) breed in the northern and western areas of the peninsula but the species is rare in the south or the islands. The Italian population of this species migrates across the Mediterranean at the Strait of Gibraltar rather than crossing the large stretch of sea between Sicily and Tunisia. This suggests that, in Italy, fall migration is oriented south-north and spring migration north-south. In this paper we test the hypothesis that the accessibility of the suitable habitat area along the Italian Peninsula is in relation to the geographical migration pattern of the studied species. We integrated information from the movement ecology, the geography and the traditional ecological features in order to provide an ecological explanation of the current biogeographical pattern of our model species. We compared statistical models with and without latitude as a predictor. Each model was based on ecological and geographical variables, including land use, prey availability, spatial distribution of environmental elements (patch analysis), geomorphology, and geography. These models predict two patterns of suitability for short-toed snake eagles in Italy. Our results suggest that the abundance of this species increases with latitude despite the existence of large areas of suitable habitat in southern Italy. We suggest that the actual distribution of the short-toed snake eagle in Italy is influenced by the particular migration path used by this population, supporting the hypothesis that this species is still colonizing the Italian Peninsula through an unexpected colonization direction from north to south.