The objective was to evaluate the effects of peripartum supplementation of a methionine hydroxy analogue (MHA) to primiparous, spring-calving beef females on dam and progeny performance. Angus heifers (n = 60) were blocked by expected parturition date, stratified by body weight (BW) and body condition score (BCS), and randomized to 1 of 15 pens. Pens were randomly assigned to 1 of 3 dietary treatments: a basal diet supplemented with 0 (M0), 15 (M15), or 30 (M30) g·animal-1·d-1MHA (provided as MFP feed supplement, Novus International Inc., St. Charles, MO). Diets were fed from 45 ± 13 (SD) d pre-calving through 81 ± 13 d postpartum (DPP), after which all cow-calf pairs were managed as a single group on pasture until weaning (199 ± 13 DPP). Dam BW, BCS, and blood samples were taken at 6 predetermined timepoints. Progeny data was collected at birth, 2 intermediate timepoints, and at weaning. Milk samples were collected for composition analysis at 7 ± 2 DPP and at 55 ± 5 DPP. Serial progesterone samples were analyzed to establish resumption of cyclicity, and ultrasonography was performed at 55 ± 5 DPP to evaluate ovarian function. Cows were bred via artificial insemination at 82 ± 13 DPP and subsequently exposed to bulls for a 55-d breeding season. Pen was the experimental unit, and preplanned orthogonal contrasts were tested (linear effect and M0 vs. M15 + M30). Dam BW and BCS were not affected by treatment (P ≥ 0.29) throughout the study. Week 1 milk fat concentration increased linearly (P = 0.05) and total solids tended to increase linearly (P = 0.07) as MHA increased; however, no other milk components were affected (P ≥ 0.16). Treatment did not affect (P ≥ 0.16) dam reproductive parameters or progeny performance from birth until weaning. Post-calving, circulating methionine equivalents tended to linearly increase (P = 0.10) with increasing MHA supplementation. At breeding, plasma urea N linearly decreased (P = 0.03) with increased supplementation of MHA, and plasma non-esterified fatty acids were less (P = 0.04) in MHA-supplemented dams compared with dams receiving no MHA. Maternal circulating glucose, glutathione peroxidase, and thiobarbituric acid-reactive substances were not affected (P ≥ 0.15) by treatment at any point. These data indicate that peripartum supplementation of MHA may increase milk fat composition shortly after calving, but MHA supplementation did not improve progeny growth or dam reproductive performance in the current study.