This study aimed to evaluate the effects of early life fecal microbiota transplantation (FMT) on the health and performance of neonatal dairy calves. The donor was selected based on health and production records and fecal material testing negative for infectious pathogens. Sixteen healthy newborn Holstein calves were randomized to either a baseline nutritional program (CON) or 1×/d inoculations with 25 g of fecal donor material (FMT) mixed in the milk replacer (n = 8/TRT) from 8 to 12 days of age. Blood and fecal samples were collected weekly, and calves were weaned at 7 weeks of age. A TRT × Week interaction was observed in haptoglobin, which was reflected in a positive quadratic effect in FMT calves but not in CON. A trend for a TRT × Week interaction was observed in the liver function biomarker paraoxonase, which resulted in greater paraoxonase in FMT calves than CON at three weeks of age. Fecal microbial community analysis revealed a significant increase in the alpha-diversity between week 1 and week 5 for the FMT calves. These results suggest that early life FMT in neonatal calves has positive effects in mediating the inflammatory response and gut microbial maturation.
The objective of this study was to investigate the effects of rumen-protected methionine (RPM) supplementation during early lactation on performance and metabolic parameters of dairy cows. Forty-two Holstein cows were blocked by parity (22 primiparous and 20 multiparous) and calving date, then randomly assigned to two groups, Control and RPM. From calving through 29 ± 8 d in milk, cows received an early lactation diet [1.59 Mcal/kg of DM, 10.7% rumen-degradable protein and 6.5% rumen-undegradable protein] with no added methionine (Control, n = 21) or with supplementation of Smartamine M (RPM, Adisseo Inc, n = 21). RPM cows were supplemented with 12 g/day Smartamine M (7.2 g of metabolizable methionine), individually top-dressed over the total mixed ration. Blood and milk samples were collected during the first two weeks of lactation and milk yield recorded until 30 days in milk. No differences in milk yield or blood metabolites were observed. Cows supplemented with RPM increased milk fat and total solids contents and fat-to-protein ratio by 0.48% units, 0.66% units, and 0.09 units, while tended to increase milk total protein content by 0.13% units, respectively. This study showed beneficial effects of early postpartum RPM supplementation on milk composition of dairy cows.
Adipose tissue (AT) is an endocrine organ with a central role on whole-body energy metabolism and development of metabolic diseases. Single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq, respectively) analyses in mice and human AT have revealed vast cell heterogeneity and functionally distinct subtypes that are potential therapeutic targets to metabolic disease. In periparturient dairy cows, AT goes through intensive remodeling and its dysfunction is associated with metabolic disease pathogenesis and decreased productive performance. The contributions of depot-specific cells and subtypes to the development of diseases in dairy cows remain to be studied. Our objective was to elucidate differences in cellular diversity of visceral (VAT) and subcutaneous (SAT) AT in dairy cows at the single-nuclei level. We collected matched SAT and VAT samples from three dairy cows and performed snRNA-seq analysis. We identified distinct cell types including four major mature adipocytes (AD) and three stem and progenitor cells (ASPC) subtypes, along with endothelial cells (EC), mesothelial cells (ME), immune cells, and pericytes and smooth muscle cells. All major cell types were present in both SAT and VAT, although a strong VAT-specificity was observed for ME, which were basically absent in SAT. One ASPC subtype was defined as adipogenic (PPARG+) while the other two had a fibro-adipogenic profile (PDGFRA+). We identified vascular and lymphatic EC subtypes, and different immune cell types and subtypes in both SAT and VAT, i.e., macrophages, monocytes, T cells, and natural killer cells. Not only did VAT show a greater proportion of immune cells, but these visceral immune cells had greater activation of pathways related to immune and inflammatory response, and complement cascade in comparison with SAT. There was a substantial contrast between depots for gene expression of complement cascade, which were greatly expressed by VAT cell subtypes compared to SAT, indicating a pro-inflammatory profile in VAT. Unprecedently, our study demonstrated cell-type and depot-specific heterogeneity in VAT and SAT of dairy cows. A better understanding of depot-specific molecular and cellular features of SAT and VAT will aid in the development of AT-targeted strategies to prevent and treat metabolic disease in dairy cows, especially during the periparturient period.
The objective of the present study was to evaluate the effects of an antioxidant and anti-inflammatory compound found in rosemary plants (Salvia rosmarinus) named carnosic acid during the transition period of dairy cows. From day 1 to 3 after calving, 16 multiparous Holstein cows received a daily intravenous infusion of either 500 mL of saline (NaCl 0.9%; Saline; n = 8) or carnosic acid at a rate of 0.3 mg/kg of BW supplied in 500 mL of saline (CA; n = 8). Blood samples were taken at –7, 2, 5, 7, 14, and 21 d relative to parturition, then analyzed for metabolites related to energy metabolism, muscle mass catabolism, liver function, inflammation, and oxidative stress. CA infusion tended to improve milk performance; however, DMI was unaffected by treatment. At 2 d relative to parturition, CA cows had lower blood concentrations of haptoglobin, paraoxonase, FRAP, and NO2– than saline cows. After treatment infusions, haptoglobin remained lower in CA cows than saline at 5 d relative to parturition. Our results demonstrate that carnosic acid promoted positive responses on inflammation and oxidative stress biomarkers and may promote beneficial effects on lactation performance in peripartal dairy cows.
Ensiling corn for longer periods is a strategy used to increase rumen bacteria access to starch. In fact, when corn is ensiled for insufficient periods, starch digestibility decreases, as evidenced by excreted starch. This study investigates the effects of corn silage ensiling time on starch digestibility of dairy cows through fecal starch analysis. The trial was conducted during the spring of 2013 and the fall of 2014 on twenty dairy herds located in the state of Paraná, southern Brazil. Total mixed ration (TMR), whole-plant corn silage (WPCS) and fecal samples were collected for determination of dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin and starch. Apparent total tract starch digestibility (ATTSD) was calculated using equations developed by Fredin et al. (2014) and Bal et al. (1997). Data were analyzed using the CORR, REG and GLM procedures of SAS. Spring and fall WPCS were ensiled for 260 and 132 days, respectively (p < 0.01). There was no difference (p > 0.05) in ATTSD-Fredin from season to season though there was a trend (p = 0.11) towards greater ATTSD-Bal for spring samples. ATTSD-Bal was positively correlated with ensiling days (r = 0.31). Starch digestibility was not negatively affected by WPCS harvesting maturity. Differences in post-ruminal starch digestion, variation between farms in DM intake and diets, limitations of the equations, influence of uncontrolled factors, and the small number of experimental units might have contributed to the absence of significant results. Overall, Bal et al. (1997) equation was more efficient in distinguishing ATTSD from different ensiling periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.