A GaN-based enhancement-mode high electron mobility transistor (HEMT) with a 1.5 nm GaN/9 nm Al0.65Ga0.35N thin barrier was reported. Without any treatment on barrier layer under the gate, the as-grown HEMTs exhibited a threshold voltage of 0.3 V, a maximum drain current density of 441 mA/mm at V
GS = 3 V and a peak extrinsic transconductance of 204 mS/mm at V
GS = 1.1 V. At the same time, both a low Schottky leakage current and an insignificant surface defects induced current dispersion were observed. Moreover, drain induction barrier lower (DIBL) effect was determined to be merely 3.28 mV/V at 1 mA/mm for a gate length of 0.5 µm. Additionally, post-gate annealing experiment at step temperatures up to 450 °C was implemented, only causing a minor shift in threshold voltage. These results demonstrated the substantial potential of thin and high Al composition barrier layers for high-voltage and highly reliable enhancement mode operation.