Day-ahead forecasting of electricity prices is important in deregulated electricity markets for all the stakeholders: energy wholesalers, traders, retailers, and consumers. Electricity price forecasting is an inherently difficult problem due to its special characteristic of dynamicity and non-stationarity. In this paper, we present a robust price forecasting mechanism that shows resilience towards aggregate demand response effect and provides highly accurate forecasted electricity prices to the stakeholders in a dynamic environment. We employ an ensemble prediction model in which a group of different algorithms participate in predicting the price for each hour of a day. We propose two different strategies, namely, Fixed Weight Method (FWM) and Varying Weight Method (VWM), for selecting each hour's expert algorithm from the set of participating algorithms. In addition, we utilize a carefully engineered set of features selected from a pool of features derived from information such as past electricity price data, weather data, and calendar data. The proposed ensemble model offers better results than both the Pattern Sequence-based Forecasting (PSF) method and our own previous work using Artificial Neural Networks (ANN) alone do on the datasets for New York, Australian, and Spanish electricity markets.