For the first time, an in situ polymerization technique was applied to produce mullite-bonded porous SiC ceramics via a reaction bonding technique. In this study, SiC microsized particles and alumina nanopowders were successfully coated by polyethylene (PE), which was synthesized from the particle surface in a slurry phase reactor with a Ziegler-Natta catalyst system. The thermal studies of the resulting samples were performed with differential scanning calorimetry and thermogravimetric analysis. The morphology analysis obtained by transmission electron microscopy and scanning electron microscopy (SEM) confirmed that PE was successfully grafted onto the particle surface. Furthermore, the obtained porous ceramics were characterized in terms of their morphologies, phase composition, open porosity, pore size distribution, and mechanical strength. SEM observations and mercury porosimtery analysis revealed that the quality of the dispersion of nanosized alumina powder into the microsized SiC particles was strongly enhanced when the particles were coated by polymers with in situ polymerization. This resulted in a higher strength and porosity of the formed ceramic porous materials with respect to the traditional process. In addition, the X-ray diffraction results reveal that the amount of mullite as the binder increased significantly for the samples fabricated by this novel method. The effects of the sintering temperature, forming pressure, and polymer content on the physical and mechanical properties of the final porous ceramic were also evaluated in this study.