We perform a quantitative, comparative study of the spin pumping, spin Seebeck and spin Hall magnetoresistance effects, all detected via the inverse spin Hall effect in a series of over 20 yttrium iron garnet/Pt samples. Our experimental results fully support present, exclusively spin currentbased, theoretical models using a single set of plausible parameters for spin mixing conductance, spin Hall angle and spin diffusion length. Our findings establish the purely spintronic nature of the aforementioned effects and provide a quantitative description in particular of the spin Seebeck effect.Pure spin currents present a new paradigm in spintronics [1, 2] and spin caloritronics [3]. In particular, spin currents are the origin of spin pumping [4,5], the spin Seebeck effect [6,7] and the spin Hall magnetoresistance (SMR) [8][9][10]. Taken alone, all these effects have been extensively studied, both experimentally [6-9, 11-13] and theoretically [4,[14][15][16][17][18]. From a theoretical point of view, all these effects are governed by the generation of a current of angular momentum via a non-equilibrium process. The flow of this spin current across a ferromagnet/normal metal interface can then be detected. The relevant interface property that determines the spin current transport thereby is the spin mixing conductance. Nevertheless, there has been an ongoing debate regarding the physical origin of the measurement data acquired in spin Seebeck and SMR experiments due to possible contamination with anomalous Nernst effect [19][20][21] or anisotropic magnetoresistance [22,23] caused by static proximity polarization of the normal metal [23]. To settle this issue, a rigorous check of the consistency of the spin-current based physical models across all three effects is needed. If possible contamination effects are absent, according to the spin mixing conductance concept [24], there should exist a generalized Ohm's law between the interfacial spin current and the energy associated with the corresponding non-equilibrium process. This relation should invariably hold for the spin pumping, spin Seebeck and spin Hall magnetoresistance effects, as they are all based on the generation and detection of interfacial, nonequilibrium spin currents. We here put forward heuristic arguments that are strongly supported by experimental evidence for a scaling law that links all aforementioned spin(calori)tronic effects on a fundamental level and allows to trace back their origin to pure spin currents. (c) The spin Hall magnetoresistance is due to the torque exerted on M by an appropriately polarized Js which yields a change in the reflected spin current J r s . The interconversion between Js (J r s ) and the charge currents Jc (J r c ) are due to the (inverse) spin Hall effect in the normal metal.[schematically depicted in Fig. 1(a)], we place YIG / Pt bilayers in a microwave cavity operated at ν = 9.85 GHz to resonantly excite magnetization dynamics. The emission of a spin current density J s across the bilayer interface into the Pt provides...