One of the main indices of the quality of water is the biochemical oxygen demand (BOD). A little over 40 years have passed since the practical application of the first microbial sensor for the determination of BOD, presented by the Japanese professor Isao Karube. This time span has brought new knowledge to and practical developments in the use of a wide range of microbial cells based on BOD biosensors. At present, this field of biotechnology is becoming an independent discipline. The traditional BOD analysis (BOD5) has not changed over many years; it takes no less than 5 days to carry out. Microbial biosensors can be used as an alternative technique for assessing the BOD attract attention because they can reduce hundredfold the time required to measure it. The review examines the experience of the creation and practical application of BOD biosensors accumulated by the international community. Special attention is paid to the use of multiple cell immobilization methods, signal registration techniques, mediators and cell consortia contained in the bioreceptor. We consider the use of nanomaterials in the modification of analytical devices developed for BOD evaluation and discuss the prospects of developing new practically important biosensor models.