Background
Due to the absence of evidence in the literature on Paralympic Powerlifting the present study investigated various methods to assess bench press maximum repetition and the way each method influences the measurement of minimum velocity limit (MVT), load at zero velocity (LD0), and force–velocity (FV).
Objective
To evaluate the precision of the multi-point method using proximal loads (40, 50, 60, 70, 80, and 90% of one repetition maximum; 1RM) compared to the four-point method (50, 60, 70, and 80% of 1RM) and the two-point method using distant loads (40 and 80% and 50 and 80% of 1RM) in in the MVT, LD0, and FV, in bench press performed by Paralympic Powerlifters (PP).
Methods
To accomplish this, 15 male elite PP athletes participated in the study (age: 27.7 ± 5.7 years; BM: 74.0 ± 19.5 kg). All participants performed an adapted bench press test (free weight) with 6 loads (40, 50, 60, 70, 80, and 90% 1RM), 4 loads (50, 60, 70, and 80% 1RM), and 2 loads (40–80% and 50–80% 1RM). The 1RM predictions were made by MVT, LD0, and FV.
Results
The main results indicated that the multiple (4 and 6) pointsmethod provides good results in the MVT (R2 = 0.482), the LD0 (R2 = 0.614), and the FV (R2 = 0.508). The two-point method (50–80%) showed a higher mean in MVT [1268.2 ± 502.0 N; ICC95% 0.76 (0.31–0.92)], in LD0 [1504.1 ± 597.3 N; 0.63 (0.17–0.86)], and in FV [1479.2 ± 636.0 N; 0.60 (0.10–0.86)].
Conclusion
The multiple-point method (4 and 6 points) and the two-point method (40–80%) using the MVT, LD0, and FV all showed a good ability to predict bench press 1RM in PP.