2011
DOI: 10.1007/s00521-011-0778-0
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting highway casualties under the effect of railway development policy in Turkey using artificial neural networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
14
0
2

Year Published

2017
2017
2023
2023

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 35 publications
(16 citation statements)
references
References 11 publications
0
14
0
2
Order By: Relevance
“…Also, there are many AI methods used in transport such as ANNs. ANNs can be used for road planning [19], public transport [20,21] Traffic Incident Detection [22][23][24][25]; and predicting traffic conditions [26][27][28][29][30][31][32][33]. It is classified into supervised and unsupervised learning methods.…”
Section: Applications Of Ai In Transportmentioning
confidence: 99%
See 1 more Smart Citation
“…Also, there are many AI methods used in transport such as ANNs. ANNs can be used for road planning [19], public transport [20,21] Traffic Incident Detection [22][23][24][25]; and predicting traffic conditions [26][27][28][29][30][31][32][33]. It is classified into supervised and unsupervised learning methods.…”
Section: Applications Of Ai In Transportmentioning
confidence: 99%
“…The results showed a planning improvement for urban development based on the simulated industrial land use patterns for several years in China. Furthermore, reference [19] focused on finding a good transportation system management and safety plan to balance the transport demand with a proper distribution of highways, railways, and airways. The author used ANN for accident and injury prediction for a highly congested route from Istanbul to Ankara.…”
Section: Ai In Planning Designing and Controlling Transportation Netmentioning
confidence: 99%
“…Слід зазначити, що ці властивості ШНМ обумовили їх досить широке використання при рішенні різноманітних задач прогнозування. Так у загальній проблемі нейромережевого прогнозування особливе місце займає задача прогнозування споживання електричної енергії [4,9,13,19,20,24,31,35,39], завдяки своїй практичній значущості і складності (хаотичність, квазіперіодичність, скачки) відповідних ЧР, структура яких може змінюватися непередбачуваним чином.…”
Section: літературний оглядunclassified
“…The training dataset served in model building, while the testing dataset was used for the validation of the developed models. Month index x 2 Average air pressure x 3 Average temperature x 4 Average wind velocity x 5 Rainfall x 6 Rainy time x 7 Average relative humidity x 8 Daylight time…”
Section: Historical Datamentioning
confidence: 99%
“…Hence, the trial-and-error method is the most commonly used method for estimating the optimum number of neurons in the hidden layer. In this method, various network architectures are tested in order to find the optimum number of hidden neurons [2,3]. In our study, the choice was also made through extensive simulation with different choices for the number of hidden nodes.…”
Section: Structure Of the Neural Networkmentioning
confidence: 99%