Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this present work, we obtain the solution of the generalized additive functional equation and also establish Hyers–Ulam stability results by using alternative fixed point for a generalized additive functional equation χ ∑ g = 1 l v g = ∑ 1 ≤ g < h < i ≤ l χ v g + v h + v i − ∑ 1 ≤ g < h ≤ l χ v g + v h − l 2 − 5 l + 2 / 2 ∑ g = 1 l χ v g − χ − v g / 2 . where l is a nonnegative integer with ℕ − 0,1,2,3,4 in Banach spaces.
In this present work, we obtain the solution of the generalized additive functional equation and also establish Hyers–Ulam stability results by using alternative fixed point for a generalized additive functional equation χ ∑ g = 1 l v g = ∑ 1 ≤ g < h < i ≤ l χ v g + v h + v i − ∑ 1 ≤ g < h ≤ l χ v g + v h − l 2 − 5 l + 2 / 2 ∑ g = 1 l χ v g − χ − v g / 2 . where l is a nonnegative integer with ℕ − 0,1,2,3,4 in Banach spaces.
This paper introduces a new dimension of an additive functional equation and obtains its general solution. The main goal of this study is to examine the Ulam stability of this equation in IFN-spaces (intuitionistic fuzzy normed spaces) with the help of direct and fixed point approaches and 2-Banach spaces. Also, we use an appropriate counterexample to demonstrate that the stability of this equation fails in a particular case.
In this article, a new class of real-valued Euler–Lagrange symmetry additive functional equations is introduced. The solution of the equation is provided, assuming the unknown function to be continuous and without any regularity conditions. The objective of this research is to derive the Hyers–Ulam–Rassias stability (HURS) in intuitionistic fuzzy normed spaces (IFNS) by applying the classical direct method and fixed point techniques (FPT). Furthermore, it is proven that the Euler–Lagrange symmetry additive functional equation and the control function, which is the IFNS of the sums and products of powers of norms, is stable. In addition, a few examples where the solution of this equation can be applied in Fourier series and Fourier transforms are demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.