2007
DOI: 10.1090/s1061-0022-07-00954-5
|View full text |Cite
|
Sign up to set email alerts
|

Gennadiĭ Mikhaĭlovich Goluzin and geometric function theory

Abstract: Abstract. G. M. Goluzin crucially influenced the development and extension of geometric function theory. His results received world-wide recognition, and his monograph "Geometric theory of functions of a complex variable" has been a reference book for several generations of analysts.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
3
0
2

Year Published

2011
2011
2016
2016

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 40 publications
0
3
0
2
Order By: Relevance
“…The explicit evaluation of B(z) is a very hard problem studied, so far, only in the case q = 3. For details on Chebotarev's problem, and some other related problems in the theory of functions, as well, the reader may be referred to [16], [17], [35].…”
Section: Statement Of the Problem And Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…The explicit evaluation of B(z) is a very hard problem studied, so far, only in the case q = 3. For details on Chebotarev's problem, and some other related problems in the theory of functions, as well, the reader may be referred to [16], [17], [35].…”
Section: Statement Of the Problem And Discussionmentioning
confidence: 99%
“…In a series of articles from 1946 through 1951, G. M. Goluzin created his own method, different from the earlier approach introduced by M. Schiffer; namely, the so-called method of internal variations. Applying his method, G. M. Goluzin solved Chebotarev's problem in terms of quadratic differentials (see [17]).…”
Section: Statement Of the Problem And Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Так как u ≡ 0 на F (1) ∪ E (3) , то u гармонически продолжается с одного экземпляра R на другой с заменой знака. Продолженная функция гармонична на R 3 всюду кроме точек z = ∞ (2) , ∞ (3) , ∞ (4) , ∞ (5) , где она имеет логарифмические особенности: 3 log |z| при z → ∞ (2) , ∞ (3) и −3 log |z| при z → ∞ (4) , ∞ (5) . Следовательно, u(z) = Re W (z),…”
Section: 2unclassified
“…dW (z) = dW (z; ∞ (2) , ∞ (3) ; ∞ (4) , ∞ (5) ) -(единственный) абелев дифференциал на R 3 с чисто мнимыми периодами и особенностями вида 1/z в точках z = ∞ (2) , ∞ (3) и вида −1/z в точках z = ∞ (4) , ∞ (5) . Компакт F соответствует нулевой линии уровня функции Re W (z; ∞ (2) , ∞ (3) ; ∞ (4) , ∞ (5) ): F = {z ∈ C : Re W (z; ∞ (2) , ∞ (3) ; ∞ (4) , ∞ (5) ) = 0} \ E.…”
Section: 2unclassified