A B S T R A C T To address the hypothesis that metabolites of arachidonic acid are important regulators of prostaglandin (PG) synthesis in intact vascular tissue, we studied arachidonate metabolism in rabbit aortas in response to a continuous infusion of arachidonic acid, 10 jg/ml. Prostacyclin (PGI2; measured as 6-keto-PGF1<,) production rate accelerated during the first 2 min, reached peak velocity at 2 min, and then progressively decelerated. The velocity profile of PGI2 production was similar to that previously reported for cyclooxygenase holoenzyme assayed in vitro, and was consistent with progressive inactivation of the enzymes leading to PGI2 synthesis. We determined the specific inhibition of cyclooxygenase and prostacyclin synthetase by measuring PGI2 and PGE2 production rates and by infusing cyclic endoperoxides. Our results indicate preferential inactivation of cyclooxygenase during arachidonate metabolism, most likely due to cyclooxygenase-derived oxidative intermediates. This was a dose-dependent response and resulted in a progressive decrease in the 6-keto-PGFI,/PGE2 ratio. Exogenously added 15-hydroperoxy eicosatetraenoic acid, on the other hand, actually stimulated cyclooxygenase activity at low doses, while markedly inhibiting prostacyclin synthetase. This finding, along with the accelerating nature of arachidonate metabolism, is consistent with the concept of "peroxide tone" as a mediator of cyclooxygenase activity in this system.These results demonstrate that arachidonate metabolites regulate PG synthesis in intact blood vessels. The Portions of this work were presented at