The relationship between the structure and properties of nanoscale conductometric sensors based on binary mixtures of metal oxides in the detection of reducing gases in the environment is considered. The sensory effect in such systems is determined by the chemisorption of oxygen molecules and the detected gas on the surface of metal oxide catalytically active particles, the transfer of the reaction products to electron-rich nanoparticles, and subsequent reactions. Particular attention is paid to the doping of nanoparticles of the sensitive layer. In particular, the effect of doping on the concentration of oxygen vacancies, the activity of oxygen centers, and the adsorption properties of nanoparticles is discussed. In addition, the role of heterogeneous contacts is analyzed.