Flexible and stretchable electronics have emerged as highly promising technologies for the next generation of electronic devices. These advancements offer numerous advantages, such as flexibility, biocompatibility, bio-integrated circuits, and light weight, enabling new possibilities in diverse applications, including e-textiles, smart lenses, healthcare technologies, smart manufacturing, consumer electronics, and smart wearable devices. In recent years, significant attention has been devoted to flexible and stretchable pressure sensors due to their potential integration with medical and healthcare devices for monitoring human activity and biological signals, such as heartbeat, respiratory rate, blood pressure, blood oxygen saturation, and muscle activity. This review comprehensively covers all aspects of recent developments in flexible and stretchable pressure sensors. It encompasses fundamental principles, force/pressure-sensitive materials, fabrication techniques for low-cost and high-performance pressure sensors, investigations of sensing mechanisms (piezoresistivity, capacitance, piezoelectricity), and state-of-the-art applications.