We generalize the classical cow-path problem [7, 14, 38, 39] into a question
that is relevant for collective foraging in animal groups. Specifically, we
consider a setting in which k identical (probabilistic) agents, initially
placed at some central location, collectively search for a treasure in the
two-dimensional plane. The treasure is placed at a target location by an
adversary and the goal is to find it as fast as possible as a function of both
k and D, where D is the distance between the central location and the target.
This is biologically motivated by cooperative, central place foraging such as
performed by ants around their nest. In this type of search there is a strong
preference to locate nearby food sources before those that are further away.
Our focus is on trying to find what can be achieved if communication is limited
or altogether absent. Indeed, to avoid overlaps agents must be highly dispersed
making communication difficult. Furthermore, if agents do not commence the
search in synchrony then even initial communication is problematic. This holds,
in particular, with respect to the question of whether the agents can
communicate and conclude their total number, k. It turns out that the knowledge
of k by the individual agents is crucial for performance. Indeed, it is a
straightforward observation that the time required for finding the treasure is
$\Omega$(D + D 2 /k), and we show in this paper that this bound can be matched
if the agents have knowledge of k up to some constant approximation. We present
an almost tight bound for the competitive penalty that must be paid, in the
running time, if agents have no information about k. Specifically, on the
negative side, we show that in such a case, there is no algorithm whose
competitiveness is O(log k). On the other hand, we show that for every constant
$\epsilon \textgreater{} 0$, there exists a rather simple uniform search
algorithm which is $O( \log^{1+\epsilon} k)$-competitive. In addition, we give
a lower bound for the setting in which agents are given some estimation of k.
As a special case, this lower bound implies that for any constant $\epsilon
\textgreater{} 0$, if each agent is given a (one-sided)
$k^\epsilon$-approximation to k, then the competitiveness is $\Omega$(log k).
Informally, our results imply that the agents can potentially perform well
without any knowledge of their total number k, however, to further improve,
they must be given a relatively good approximation of k. Finally, we propose a
uniform algorithm that is both efficient and extremely simple suggesting its
relevance for actual biological scenarios