The aim of this paper is to show that the artificial gorilla troops optimization (GTO) algorithm, as an optimizer, can cope with test functions such as CEC2019, and also to best optimize the three bar truss design problem as a constrained optimization problem. As a method, two statistical measures such as the best values provided by the algorithms and the standard deviation showing the distance between the values were studied. At the same time, the convergence rate of the algorithms compared by the convergence curves were examined. For this purpose, it has been competed against two other swarm-based algorithms, sine-cosine algorithm (SCA) and golden eagle optimization (GEO). The optimization of the three bar truss design problem, which is another side of the study, has been made. The GTO algorithm reached the best values in the optimization of the parameters of the problem. In addition to the convergence curve, statistical results have examined, and the advantages of GTO are revealed through box-plot figures that evaluate the relationship between median and quartiles and the distribution among all results.