Flow regulation affects bordering riparian plant communities worldwide, but how different plant life forms are affected by river regulation still needs further research. In northern Sweden, we selected 10 rivers ranging from free-flowing to low, moderately, and highly regulated ones. In 94 reaches across those rivers, we evaluated the relative abundance of woody and herbaceous (i.e., graminoids and forbs) life forms, their species richness, and their relative presence. We also explored which, and to what extent, hydrological variables drove species assembly within each life form. The relative abundance and species richness of each life form decreased across river categories with increasing levels of regulation. This was particularly apparent in herbaceous life forms, and the most drastic decreases were observed in all life forms in moderately or highly regulated reaches. Additionally, when river regulation increased, the relative presence of many species from all life forms decreased. Unlike woody species, only a few new herbaceous species appeared in regulated reaches. A canonical correspondence analyses (CCA) revealed that a wide range of hydrological variables explained the occurrence of woody species, while fewer variables explained variation in the graminoid and forb life forms. We conclude that flow regulation and its intensity result into clear shifts in the relative abundance of different life forms, as well as in changes of within-group species richness and composition. Consequently, the modification of certain flow attributes in flow regulation schemes, as well as the intensity of these modifications, may alter the ratio between herbaceous and woody species, ultimately impacting the functions and benefits derived from each life form.