In this paper, we review recent progress in the understanding of insulator/semiconductor interfaces in organic field-effect transistors (OFETs). We would like to emphasize that the choice of gate insulator is as important for high-quality OFET devices as the semiconductor itself, especially because of the unique transport mechanisms operating in them. To date researchers have explored numerous organic and inorganic insulator materials, some of them designed to improve the morphology of the organic semiconductor (OSC). Surface treatments, particularly on inorganic insulators, have been shown to influence significantly molecular ordering and device performance. In addition, the deposition technique used for the insulator and semiconductor layers has a further impact on the active interface. Dielectric related effects are reviewed here for a variety of polymeric and molecular semiconductors reported in the literature, with an emphasis on electronic transport. We also review in more detail experiences at Philips and the recent work at Avecia to clarify some of the interface phenomena using amorphous OSC.