This article reports on using cassava starch nanocrystals (CSN) to strengthen nanocomposite films from the same matrix. CSN were obtained by acid hydrolysis. Nanocomposite (starch:glycerol:CSN/4.0:2.1:1–10 wt %) were processed by casting and the films were characterized. The CSN (30% yield) presented minimally clustered globular forms, 45 to 178 nm in diameter, with a crystalline index of 46%. Water‐vapor transmission rate, tensile strength, and elastic modulus of the films were influenced by the linear effect of CSN concentration (R2 = −0.92, 0.91, 0.99, respectively), while the other parameters resulted in quadratic relations |0.69–0.96|. The film with 10% CSN presented a 43% reduction in water vapor permeability, associated with increases of 200% in traction resistance, and 616% in elasticity modulus, compared with the control. The hydrolysis of part of the cassava starch into nanocrystals resulted in a reduction in permeability and nano reinforcement of the films due to good compatibility and interaction between both, without influencing biodegradability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45311.