ZnO nanorod/GaN light-emitting diodes: The origin of yellow and violet emission bands under reverse and forward bias J. Appl. Phys. 110, 094513 (2011) Temperature-dependence of the internal efficiency droop in GaN-based diodes Appl. Phys. Lett. 99, 181127 (2011) Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes Appl. Phys. Lett. 99, 181116 (2011) Performance enhancement of blue light-emitting diodes with AlGaN barriers and a special designed electronblocking layer J. Appl. Phys. 110, 093104 (2011) A light emitting diode based photoelectrochemical screener for distributed combinatorial materials discovery Rev. Sci. Instrum. 82, 114101 (2011) Additional information on J. Appl. Phys. Microstructural and electroluminescence measurements are carried out on boron implanted dislocation engineered silicon light emitting diodes (LEDs) co-implanted with the rare earth thulium to provide wavelength tuning in the infra-red. Silicon LEDs operating in the range from 1.1-1.35 lm are fabricated by co-implantation of boron and thulium into n-type Si (100) wafers and subsequently rapid thermally annealed to activate the implants and to engineer the dislocation loop array that is crucial in allowing light emission. Ohmic contacts are applied to the p and n regions to form conventional p-n junction LEDs. Electroluminescence is obtained under normal forward biasing of the devices. The influence of implantation sequence (B or Tm first), ion dose, and the post-implantation annealing on the microstructure and electroluminescence from the devices is studied. A clear role of the heavy-ion Tm co-implant in significantly modifying the boron induced dislocation loop array distribution is demonstrated. We also identify the development of dislocation loops under thermal spikes upon heavy ion (Tm) implantation into Si. The results contribute to a better understanding of the basic processes involved in fabrication and functioning of co-implanted devices, toward achieving higher light emission efficiency.